Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andreas Fischer

School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 10044 Stockholm, Sweden

Correspondence e-mail: afischer@kth.se

Key indicators

Single-crystal X-ray study
$T=299 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.054$
$w R$ factor $=0.134$
Data-to-parameter ratio $=19.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
D-Alanine alaninium bromide

The title compound, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{Br}^{-} \cdot \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}_{2}$, crystallizes from an aqueous solution of D -alanine and racemic 2,3dibromosuccinic acid. The structure includes alaninium cations and neutral zwitterionic alanine, and displays N $\mathrm{H} \cdots \mathrm{Br}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Comment

We are currently studying the structural chemistry of substituted succinic acids such as dibromosuccinic acid. In an attempt to crystallize enantiomerically pure 2,3-dibromosuccinic acid (2,3 -DBSA), an aqueous solution of D -alanine and the racemic acid was allowed to evaporate slowly at room temperature. The crystallization product was the title compound, (I), probably formed as the result of an elimination reaction. It has been observed previously that HBr is readily eliminated from racemic 2,3-DBSA, even at room temperature and in the presence of rather weak bases (Fischer, 2006a,b).

(I)

The structure of (I) includes neutral zwitterionic D-alanine, D-alaninium cations and bromide anions (Fig. 1). The

Figure 1
The asymmetric unit of (I), showing displacement ellipsoids at the 50% probablility level for non- H atoms. The dashed line denotes an $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond.

Figure 2
The hydrogen-bonding pattern in (I). H bonds are shown as dashed lines. Components of the asymmetric unit are indicated by light-blue bonds.
geometry of the two alanine species is unexceptional. All six H atoms bound to N are involved in hydrogen bonds, five of which are $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (Table 1). Additionally, one $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is present (Table 1). The hydrogen bonds lead to the formation of a complex threedimensional network (Fig. 2).

Co-crystallization of alaninium cations and neutral (zwitterionic) alanine in the presence of a suitable anion has been observed previously for nitrate (Ramos Silva et al., 2001). In the alanine/nitrate system, alaninium nitrate (1:1) has also been prepared and structurally characterized (Bahadur \& Rajaram, 1995). As far as alaninium halides are concerned, only DL-alanine hydrochloride (Trotter, 1962) and L-alanine hydrochloride (di Blasio et al. 1977) have so far been characterized. The question of whether alaninium halides exhibit the same behaviour as the nitrate will be the subject of further investigations.

Experimental

The synthesis of racemic 2,3-dibromosuccinic acid has been described previously (Fischer, 2006c). 133 mg of the acid were dissolved together with 43 mg of D -alanine (Sigma) in 5.52 g of demineralized water. The solution was left to stand for evaporation, and the title compound crystallized within a couple of days.

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{Br}^{-} \cdot \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}_{2}$	$Z=2$
$M_{r}=259.10$	$D_{x}=1.561 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1}$	Mo K radiation 2
$a=9.485(4) \AA$	$\mu=3.72 \mathrm{~mm}^{-1}$
$b=5.1678(6) \AA$	$T=299 \mathrm{~K}$
$c=11.258(2) \AA$	Plate, colourless
$\beta=92.97(3)^{\circ} \AA$	$0.31 \times 0.19 \times 0.06 \mathrm{~mm}$
$V=551.1(3) \AA^{3}$	

Data collection

Bruker-Nonius KappaCCD
\quad diffractometer
φ and ω scans
Absorption correction: numerical
(HABITUS; Herrendorf \&
Bärnighausen, 1997)
$T_{\min }=0.378, T_{\max }=0.774$

6831 measured reflections 2422 independent reflections 2127 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0377 P)^{2}\right. \\
& +1.5036 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.80 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.49 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1033 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.07 \text { (3) }
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.134$
$S=1.15$
2422 reflections
123 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br} 1$	0.89	2.52	$3.399(9)$	170
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Br}^{\mathrm{i}}$	0.89	2.59	$3.426(9)$	156
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{Br}^{\text {ii }}$	0.89	2.54	$3.408(5)$	167
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Br}^{1 i}$	0.89	2.60	$3.484(9)$	174
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Br}^{\mathrm{iii}}$	0.89	2.60	$3.424(8)$	155
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots 4^{\text {iv }}$	0.89	2.03	$2.802(7)$	144
$\mathrm{O} 2-\mathrm{H} 2 D \cdots \mathrm{O}^{\mathrm{iv}}$	0.82	1.69	$2.431(8)$	150

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1, y+\frac{1}{2},-z+1$; (iii) $-x+1, y-\frac{1}{2},-z+1$; (iv)
$-x+1, y-\frac{1}{2},-z$.
H atoms were visible in difference Fourier maps, but were placed in idealized positions with $\mathrm{N}-\mathrm{H}=0.89 \AA, \mathrm{C}-\mathrm{H}=0.98 \AA, \mathrm{C}_{\text {methyl }}-\mathrm{H}$ $=0.96 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$. They were allowed to ride during subsequent refinement with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom) or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (methyl C$)$. The methyl and NH_{3} groups were allowed to rotate about their local threefold axes.

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MAXUS (Mackay et al., 1999).

The Swedish Research Council (VR) is acknowledged for providing funding for the single-crystal diffractometer.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bahadur, S. A. \& Rajaram, R. K. (1995). Z. Kristallogr. 210, 279-281.
Brandenburg, K. (2006). DIAMOND. Release 3.1d. Crystal Impact GbR, Bonn, Germany.
di Blasio, B., Pavone, V. \& Pedone, C. (1977). Cryst. Struct. Commun. 6, 745748.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Fischer, A. (2006a). Acta Cryst. E62, o2556-o2557.
Fischer, A. (2006b). Acta Cryst. E62, o4190-o4191.
Fischer, A. (2006c). Acta Cryst. E62, o1281-o1283.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.

organic papers

Herrendorf, W. \& Bärnighausen, H. (1997). HABITUS. Universities of Giessen and Karlsruhe, Germany
Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. \& Shankland, K. (1999). MAXUS. Nonius BV, Delft, The Netherlands, MacScience Co. Ltd., Japan, and University of Glasgow, Scotland.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands
Ramos Silva, M., Paixão, J. A., Matos Beja, A. \& Alte da Veiga, L. (2001). Acta Cryst. C57, 838-840.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Trotter, J. (1962). Can. J. Chem. 40, 1218-1220.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

